Appendix

067

doi: 10.5617/michael.11417

Photo 1: Plectasin team at the Novozymes. In the back, Per H. Mygind and Dorotea Raventos. On the right Hans Henrik Kristensen.

Photo 2: From left to right. Eefjan Breukink, Hans Henrik Kristensen, Per H. Mygind, Olivier Taboureau, Kirk M. Schnorr, Leonardo De Maria and Dorotea Raventos. University of Copenhagen Witness Seminar about Plectasin, 16th November 2023.

References

  1. Gradmann C. Magic Bullets and Moving Targets: Antibiotic Resistance and Experimental Chemotherapy 1900 - 1940. Dynamis 31 (2011;31):305-21.

  2. Gradmann C. Sensitive Matters: The World Health Organisation and Antibiotics Resistance Testing, 1945 – 1975. Social History of Medicine 2013;26:555-74.

  3. Gradmann C. Re-Inventing Infectious Disease: Antibiotic Resistance and Drug Development at the Bayer Company 1945-80. Medical History 2016;60:155–80.

  4. Cook MA, Wright GD. The past, present, and future of antibiotics. Vol. 14, Science Translational Medicine 2022;14:eabo7793.

  5. Lepore C, Silver L, Theuretzbacher U, Thomas J, Visi D. The small-molecule antibiotics pipeline: 2014-2018. Nature reviews. Drug discovery 2019;18:739.

  6. Beyer P, Paulin S. The Antibacterial Research and Development Pipeline Needs Urgent Solutions. ACS Infectious Diseases 2020;6:1281-91.

  7. Mohr KI. History of antibiotics research. Current Topics in Microbiology and Immunology 2016;398:237-72.

  8. Quinn R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. American Journal of Public Health. 2013;103:426-34.

  9. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D. Antibiotic discovery in the twenty-first century: Current trends and future perspectives. Journal of Antibiotics 2010;63:423-430.

  10. Shlaes DM. The abandonment of antibacterials: Why and wherefore? Current Opinion in Pharmacology 2003;3:470-73.

  11. Power E. Impact of antibiotic restrictions: The pharmaceutical perspective. Clinical Microbiology and Infection 2006;12:25-34.

  12. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen C, Ludvigsen S, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005;437:975–80.

  13. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 2010;328:1168–72.

  14. Becker F, Schnorr K, Wilting R, Tolstrup N, Bendtsen JD, Olsen PB. Development of in vitro transposon assisted signal sequence trapping and its use in screening Bacillus halodurans C125 and Sulfolobus solfataricus P2 gene libraries. Journal of Microbiological Methods 2004;57:123-33.

  15. Oeemig JS, Lynggaard C, Knudsen DH, Hansen FT, Nørgaard KD, Schneider T, et al. Eurocin, a new fungal defensin: Structure, lipid binding, and its mode of action. Journal of Biological Chemistry 2012;287:42 361–72.

  16. Mao R, Teng D, Wang X, Zhang Y, Jiao J, Cao X, et al. Optimization of expression conditions for a novel NZ2114-derived antimicrobial peptide-MP1102 under the control of the GAP promoter in Pichia pastoris X-33. BMC Microbiology 2015;15:57.

  17. Xiong YQ, Hady WA, Deslandes A, Rey A, Fraisse L, Kristensen HH, et al. Efficacy of NZ2114, a novel Plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2011;55:5325–30.

  18. Edwards IA, Henriques ST, Blaskovich MAT, Elliott AG, Cooper MA. Investigations into the membrane activity of Arenicin antimicrobial peptide AA139. Biochimia et Biophysica Acta - General Subjects 2022;1866:130 156.

  19. Wang X, Wang X, Teng D, Zhang Y, Mao R, Xi D, et al. Candidacidal mechanism of the Arenicin-3-derived peptide NZ17 074 from Arenicola marina. Applied Microbiology and Biotechnology 2014;98:7387-98.

  20. Schmitz S, Hoffmann A, Szekat C, Rudd B, Bierbaum G. The lantibiotic Mersacidin is an autoinducing peptide. Applied and Environmental Microbiology 2006;72:7270–7.

  21. Soltani S, Hammami R, Cotter PD, Rebuffat S, Said L Ben, Gaudreau H, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews 2021;45:fuaa039.

  22. Martinenghi LD, Leisner JJ. Scientists’ assessments of research on lactic acid bacterial bacteriocins 1990–2010. Frontiers in Microbiology 2022;13:908 336.

  23. Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II flipping to polymerization. Chemical Reviews 2021;122:8884-910.

  24. Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of koji mold and exploration of its future. DNA Research 2008;15:173–83.

  25. Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, et al. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019;24:351.

  26. Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cellular and Molecular Life Sciences 2021;78:4259–82.

  27. Yasin B, Pang M, Lehrer RI, Wagar EA. Activity of Novispirin G-10, a novel antimicrobial peptide against Chlamydia trachomatis and vaginosis-associated bacteria. Experimental and Molecular Pathology 2003;74:190–5.

  28. Dhople V, Krukemeyer A, Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochimica et Biophysica Acta 2006;1758:1499–512.

  29. Frimodt-Møller N. The mouse peritonitis model: present and future use [Internet]. Journal of Antimicrobial Chemotherapy 1993;31:D55-60.

  30. Lin B, Qing X, Liao J, Zhuo K. Role of protein glycosylation in host-pathogen interaction. Cells 2020;9:1022.

  31. Yang B, Good D, Mosaiab T, Liu W, Ni G, Kaur J, et al. Significance of LL-37 on Immunomodulation and Disease Outcome. Biomed Research International 2020;2020:83 419 712.

  32. Id WJ, Basgut B, Abdi A. Efficacy and safety of novel glycopeptides versus vancomycin for the treatment of gram-positive bacterial infections including methicillin resistant Staphylococcus aureus: A systematic review and meta-analysis. PLoS One 2021; 16:e0 260 539.

  33. Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Science 2020;29:654-669.

  34. Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology 2014;5:241.

  35. Findlay B, Zhanel GG, Schweizer F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrobial Agents and Chemotherapy 2010;54:4049–58.

  36. Hussein M, Karas JA, Schneider-Futschik EK, Chen F, Swarbrick J, A Paulin OK, et al. The killing mechanism of teixobactin against methicillin-resistant Staphylococcus aureus: an untargeted metabolomics study. mSystems 2020;5:e00 077-20.

  37. Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MG, de Benedetti S, et al. A new antibiotic from an uncultured bacterium binds to an immutable target. Cell 2023;186:4059-4073.

  38. Katz BE, Fisher AA. Bacitracin: A unique topical antibiotic sensitizer. Journal of the American Academy of Dermatology 1987;17:1016-1024.

  39. Bell G, Gouyon PH. Arming the enemy: the evolution of resistance to self-proteins. Microbiology 2003, 149:1367-1375.